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1 Introduction

A positive integer is called k-smooth if none of its prime factors are greater than
k. Let P (k) be the set of prime numbers not greater than k, i.e.,

P (k) = {n ∈ N : n is prime number and n ≤ k}.

In the classic Hamming problem, we are asked to print the �rst n 5-smooth num-
bers (they are also called Hamming numbers) in the increasing order. Dijkstra
[1] proposed the algorithm below in 1981 to solve this problem.

Algorithm 1 Dijkstra's 5-smooth algorithm

H ← {1} , k ← 0, R← ∅
while k < n do

h← the minimum of H.
H ← 2H ∪ 3H ∪ 5H (aH means the set {ah : a ∈ H} )
Put h into R
k ← k + 1

end while

Although Dijkstra's algorithm is designed to solve the classic Hamming prob-
lem, it is quite straightforward to extend it to solve general Hamming problem,
i.e., print the �rst n k-smooth number in the increasing order. However, the pro-
gramming language without lazy evaluation feature, it is very hard to manage
it to run in O(n) time, provided that computing multiplication of two integers
takes O(1) time. In this paper, we propose a new algorithm to solve Hamming
problem in a more general setting described below.

Let B be a �nite set of m positive integers. We arrange the elements in B so
that b1 < b2 < . . . < bm. We say that B is a smooth base if for each element bk,
it has a prime factor pk whose is not included in any other element. Formally,
B is a smooth base if and only if

∀k ∃pk : (pk | bk) ∧ (∀q 6= k : p - bq),
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where p | bk means there is a integer t such that bk = pt, and p - bk means no
such integer t exsits. Such a prime factor pk is called the key factor of bk. In
other words, B is a smooth base if and only if every element has at least one
key factor.

Given a smooth base B = {b1, b2, . . . , bm}, we use H(B) to denote the set
containing all the integers in the form

bx1
1 bx2

2 · · · bxm
m ,

where x1, x2, . . . , xm are nonnegative integers. We also say that H(B) is gen-
erated by B, and numbers in B are called generalized Hamming numbers. It is
easy to see that every number in H(B) can be uniquely represented by this way,
i.e., every number in H(B) correpsonds to a unique tupple (x1, x2, . . . , xm).
Thus, once the smooth base is �xed, we also simply use (x1, x2, . . . , xm) to
denote bx1

1 bx2
2 · · · bxm

m .
Note that P (k) is a smooth base for all k ≥ 2. For example, if B = P (5) =

{2, 3, 5}, then H(B) is the collection of all 5-smooth numbers. Thus, comput-
ing the �rst n k-smooth numbers is just a special case of computing �rst n
generalized Hamming numbers generated by a smooth given smooth base.

2 Algorithm

If examinating the Dijkstra's algorithm closely, we can see that there are two
essential operations: �nding the minimum of H and merging 2H, 3H and 5H.
For the merging operation, if the three components merged are disjoint, then
it is very easy. Unfortunately, they are not. For example, 2 × 3 belong to 2H
and 3H for H = {2, 3, 5}. To avoid such duplicating, one possible way is to
resolve the ambiguity: assign 2× 3 to either 2H or 3H, but not both. This can
be done by adopting a kind of �Maximum Principle�: if a ∈ sH and a ∈ tH at
the same time, and s < t, we only assign a to tH. For a belongs to more than
two such sets iH, we assign a to the one with largest i. Inspired by this idea,
we have following algorithm to compute �rst n generalized Hamming numbers
generated by a smooth base B = {b1, b2, . . . , bm}.

Theorem 1. When Aglorithm 2 terminates, R is the sequence of the �rst n
generalized Hamming numbers generated by B.

To prove the theorem, we shall �rstly establish two impartant facts. The
�rst one shows that Qi and Qjare disjoint if i 6= j.

Fact 1. If i 6= j, then Qi ∩Qj = ∅.

Proof. We �rst show by induction that any element in Q1 does not contain any
key factors of b2, b3, . . . , bm. At the beginning, Q1 = {b1} and by the de�nition
of smooth base B, b1 does not have key factors of b2, b3, . . . , bm. Now assume
after the �rst p loops of the while block, elements in Q1 do not contain key
factors of b2, b3, . . . , bm. If at the p+1st loop of the while block, a new element
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Algorithm 2 Algorithm for Computing H(B)

Initialize queues Q1, Q2, . . . , Qm to be empty
R← ∅
for t from 1 to m do

push bt into queue Qt

end for

k ← 0
while k < n do

Let h be the minimum element in the front of each queue Qi (1 ≤ i ≤ m)
and assume h ∈ Qj

for t from j to m do

push h · bt into queue Qt

end for

Remove h from Qj .
Put h into output sequence R
k ← k + 1

end while

h · b1is pushed into Q1, then according to the algorithm, h must come from Q1

and hence h does not contain key factors of b2, b3, . . . , bm. This also implies
that h · b1 does not contain key factors of b2, b3, . . . , bm and all members of Q1

do not contain key factors of b2, b3, . . . , bm in the end of the p + 1st loop. The
statement is trivially true if there is no element pushed into Q1in p+ 1st loop.

Again, by induction we show that members in Qi (1 ≤ i < m) do not contain
key factors in bi+1, bi+2, . . . , bm. For i = 1, the statement holds by the argument
above. Now assume the statement holds for all 1 ≤ i < p < m. By the similar
argument used to prove the statement for Q1, we can show that the statement
also holds for Qp. Therefore, the statement holds for 1 ≤ i < m.

By the algorithm, we also know that elements in Qi (1 ≤ i ≤ m) includes
key factor of bi. Now let 1 ≤ i < j ≤ m. Since members in Qi do not contain
any key factor of bj while all members in Qj have a key factor of bj , no element
in Qi can belong to Qj and hence Qi ∩Qj = ∅.

Now we have known that elements from di�erent queues are distinct. To
demonstrate that no duplicated numbers will be added to R, we need to show
that elements in the same queue is also distinct. Actually, we manage to show
a stronger conclusion: elements in the same queue are pushed into the queue
by the strictly increasing order. We also obtain an important fact at the same
time, which shows every generalized Hamming number will be pushed into some
queue. This guranttees than no generalized Hamming numbers are skipped by
the algorithm.

Before starting the next fact, we de�ne followers of a generalized Ham-
ming number (x1, x2, . . . , xm) as the m numbers (x1 + 1, x2, . . . , xm), (x1, x2 +
1, . . . , xm), . . . , (x1, x2, . . . , xm + 1) .

Fact 2. At any time, elements in Qi (1 ≤ i ≤ m) are strictly increasing and
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hence distinct. Also, if at step p, (x1, x2, . . . , xm) is removed from some queue,
then each of its m followers, either has been already pushed into some queue at
some step q (q < p), or will be pushed into some queue at the step p.

Proof. Again, we prove it by induction. Obviously, at the very beginning of the
�rst loop of the while block, the statement above holds. Assume the statement
is correct at the step p − 1. Suppose at the step p, g = (x1, x2, . . . , xm) is
removed from queue Qj .

For 1 ≤ i < j, since (x1, . . . , xi + 1, xi+1, . . . , xj − 1, xj+1, . . . xm) is smaller
than g, it was removed at some step l < p, according to the induction assump-
tion. Therefore, by the assumption, its follower (x1, . . . , xi + 1, xi+1, . . . , xm),
which is also a follower of g, was pushed into some queue before the step p.
For i ≥ j, the follower (x1, . . . , xi + 1, . . . , xm) is pushed into Qi at the step p.
Therefore, the second half of the statement still holds for the step p.

For each i such that j ≤ i ≤ m, there is a new element (x1, . . . , xi+1, . . . , xm)
pushed into Qi. If Qi contains only one element (x1, . . . , xi + 1, . . . , xm) , then
Qi is increasing trivially. Now assume Qi contains more than one element. Let
(y1, . . . , yi + 1, . . . , ym) be any one in Qi other than (x1, . . . , xi + 1, . . . , xm).
According to the algorithm, (y1, . . . , yi, . . . , ym) was pushed into Qi before g
because the element (y1, . . . , yi−1, . . . , ym) was removed from some queue before
g. Hence (y1, . . . , yi− 1, . . . , ym) < g, and further (y1, . . . , yi− 1, . . . , ym)× bi <
g× bi. That is, (y1, . . . , yi, . . . , ym) < (x1, . . . , xi +1, . . . , xm), and Qi is strictly
increasing.

Given these two facts established, it is quite straightforward to see the cor-
rectness of the statement in Theorem 1.

Proof. Since numbers in each queue is strictly increasing and numbers in all
queues are distinct, the outputed sequence is strictly increasing and hence has
no duplicates. Also, since no number will be skipped, the output sequence must
contain the �rst n generalized Hamming numbers generated by the base B when
the algorithm terminates.
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